Abstract

Duchenne Muscular Dystrophy (DMD) is the most common and severe form of muscular dystrophy. It is a lethal X-linked recessive disease occurring in 1/3,500 male live births. DMD currently has no cure and is caused by a mutation in the dystrophin gene, with diagnosis occurring between 3-5 years of age. This disease causes progressive muscular deterioration, ultimately affecting the skeletal, pulmonary, and cardiac organ systems leading to death in the 2nd or 3rd decades of life. The main cause of death in DMD is dilated cardiomyopathy (DCM). The purpose of this project is to identify the effects of hydrogen sulfide (H₂S) on DCM in DMD. H₂S is mito-protective, anti-inflammatory, anti-apoptotic and anti-fibrotic. We believe H₂S could serve as a cardioprotective agent for DCM in DMD. Male mdx/mTRKO mice were fed a diet of SG1002, an orally active H₂S donor. Mice were separated into early treatment (ET) beginning at the time of weaning, late treatment (LT) beginning at 7 months and no treatment (NT). Mice were followed over a 12-month time course with monthly echocardiography. We were able to determine the NT group showed significant reduction in left ventricular ejection fraction (LVEF) compared to wild type (WT) mice. LT group showed preservation of LVEF. LT group showed LVEF initially declining at a similar rate to NT group. Subsequently, LT mice were treated with H₂S and showed significant recovery of LVEF. Our results strongly suggest that daily H₂S therapy is beneficial for preserving cardiac function in DMD. H₂S could serve to preserve or recover LVEF in a mouse model of DMD. H₂S could be mediating this cardioprotective effect by suppressing inflammation and decreasing cardiac fibrosis. More studies are needed to further investigate how H₂S is imparting its beneficial effects.

Background

Duchenne Muscular dystrophy (DMD) is the most commonly inherited form of human myopathy and has very detrimental impacts to those affected by it. DMD affects young males, while females can be carriers for this disease. Young boys often display symptoms of DMD around the ages of 3-5, primarily affecting the skeletal muscles at first. Due to progressive muscular deterioration, a limited ability to exercise masks many of the early signs of cardiomyopathy (DMD-CM). Initially, respiratory failure was the leading cause of death in most patients with DMD, however with the progression of various forms of respiratory therapy the lifespan of patients with DMD has increased. Now, most patients with DMD can live until their 20s or 30s, before, unfortunately, suffering from the effects of DMD-CM. As the cardiac muscle continues to deteriorate as patients get older, the dystrophin deficiency in cardiac tissue can lead to many more serious issues. Dystrophin is a protein which is responsible for strengthening muscle fiber and preventing degradation and injury. However, in a patient with DMD this dystrophin in the cardiac tissue is defected leading to loss of membrane integrity, extracellular calcium influx, and eventually cardiomyocyte death.

Purpose

Hydrogen Sulfide, (H₂S), has been shown to be anti-fibrotic, mito-protective, anti-inflammatory, and anti-apoptotic in several models of cardiac diseases making it a suitable candidate to prevent cardiomyopathy in DMD and potentially reverse some of the effects of this disease in heart tissue. H₂S can prevent the scarring of heart tissue and prevent the death of cells in the heart. With the development of H₂S as treatment, the lifespan of those suffering from DMD could increase.

Results

Results showed that H₂S can play an important role in preventing the development of DMD-CM if used as a method of early treatment. Similarly, if a patient is already diagnosed with DMD, our study demonstrates that late treatment with H₂S can cause a reversal of some of the effects of DMD-CM. Even with late treatment, LVEF was preserved to values similar to early treatment and wild type mice. Our data suggest that H₂S can play a powerful role in not only cardio-protection, but also improving the quality of life of those suffering from DMD.

Future Directions

Further research is needed to determine how exactly H₂S is able to preserve cardiac function and reverse the effects of DMD-CM. We are still unsure what route is used by H₂S to cause recovery and prevention in patients with DMD, although we suspect that improving mitochondrial function and suppressing inflammation with H₂S are important pathways.

References

2. Emery, A. E. H. Lancet 359, 687–695
5. FINSTERER, J. et al. Cardiology 99, 1–19

Acknowledgements

I would especially like to thank Mrs. Taylor Schultz, Dr. Gabriele Maurer, Dr. Frank Raucci, and Dr. Fadi Saloum for their expert guidance and support throughout the duration of this program. I would also like to thank the NIH for funding the research program in Dr. Saloum’s lab. I would also like to thank the MSIP Co-Directors Aditya Kotha, Anaya Surve, and Siddharth Venigalla alongside the MSIP Sponsors Dr. Whitehurst-Cock and Dr. Jackson.