Introduction

Gulf War Illness [GWI] is a chronic illness that affects approximately 200,000 veterans with fatigue, muscle pain, cognitive problems, insomnia, memory loss, diarrhea, among many symptoms (1). GWI’s cause was recently determined to have been suboxic levels of nerve agents like sarin gas, released into the atmosphere when Iraqi chemical weapon storage facilities were bombed (2). Over time, these airborne nerve agents can inflame the brain and impair its normal function. A key factor behind this process is the cytokine tumor necrosis factor [TNF], which can cause cell death and inflammation if it takes on a soluble form [solTNF]. (3) To solve this problem, we are using an anti-inflammatory drug (known here as drug X) developed to neutralize solTNF, in a rat model of GWI to determine if it should be used in patients with GWI to repair their brain structure and function.

GWI Model and Treatment

Sixty-eight Sprague-Dawley rats in 3 cohorts were used in this study. At 9 weeks of age, half the rats (‘GWI’ rats) were randomly chosen to be injected with sarin gas (DFP) at low levels (0.5 mg/kg, LD50). The other rats (‘Naïve’ rats) received vehicle injections (ice water). At 9 weeks of age, half the rats (‘Naïve’ rats) received vehicle injections (ice water). The rats in cohort 3 were first deeply anesthetized with pentobarbital (1 mg/kg, IP). The rats were then removed and replaced with a ceramic garden tree figurine (height ~10 cm). These rats were thus divided into 4 groups, according to age, neuronal injury, and behavioral outcomes.

Behavioral Testing and Methods

Open Field Test (OFT)

The Open Field Test uses a circular open-field arena (diameter 128 cm) with 30 cm high plexiglass walls. Rats were placed into the arena’s peripheral zone and their behavior was observed for 5 minutes. The ANY-maze software divided the arena into central (diameter 50 cm) and peripheral zones, and noted the time each rat spent in the central zone.

Novel Object Recognition (NOR) Test

The Novel Object Recognition Test uses the same arena as the OFT. Two identical ceramic garden frog figurines (height ~10 cm) were placed on opposite sides of the arena, 20 cm from the edge. Each rat was placed into the center of the field and were given 5 minutes to explore their surroundings before being returned to their cage. One of the frog figurines was then removed and replaced with a ceramic garden tree figurine (height ~10 cm).

After 1 hour, the rat was again placed into the center of the arena and allowed to explore for 5 minutes. The ANY-maze software tracked the time the rats spent exploring the old object and novel object.

Magnetic Resonance Imaging (MRI)

The rats in cohort 3 were first deeply anesthetized under 4% isoflurane. MRI was performed on a 7-Tesla 30 cm horizontal bore magnetic resonance imager with a maximum gradient strength of 600 mT/m. Radiofrequency transmission and reception were performed with coils specifically designed for rat brain imaging. DTI scans were acquired using the following parameters: TR/TE of 3000/27 ms, matrix size of 128x128, 20x20 mm field of view, slice thickness of 0.1 mm, and diffusion sensitizing b-values of 0 and 800 s/mm2. Each DTI scan was assessed through the ImageJ software (National Institute of Health) for brain size, and either hippocampal edema (slice 4) or lateral ventricular size (slice 5).

Results

Figure 1: An illustrative diagram of the OFT

Figure 2: An illustrative diagram of the NOR Test

Figure 3: Cohort 3 MRI Scans (Slice 4 on left, Slice 5 on right)

Figure 4: Hippocampal Edemas caused by Treatments (Slice 4 MRIs)

Figure 5: Lateral Ventricles Sizes caused by Treatments (Slice 5 MRIs)

Figure 6: Percent Time Spent in Peripheral Zone in OFT

Figure 7: Time Spent with Old and Novel Objects in NOR

Conclusion

Through ImageJ analysis of the MRIs, it was noted that neither exposure to DFP nor Drug X altered the rats’ overall brain size. However, exposure to DFP significantly increased the hippocampal area of the GWI+Veh rats through inflammation and development of edema. GWI+Veh rats also had much larger lateral ventricular areas compared to the control (Naïve+Veh). Moreover, two weeks of Drug X treatment for GWI rats had no effect on reducing their irregular hippocampal edema and lateral ventricular size. Rats should be naturally curious, but behavioral tests found that GWI+Veh rats spent less time in the OFT central zone than control rats, indicating increased levels of anxiety. GWI rats also have difficulty in cognition and memory, because they spent less time exploring the NOR novel object compared to Naïve rats.

Acknowledgements

I would like to acknowledge and give my warmest thanks to my mentor Dr. Dixon for her invaluable guidance throughout the project. Her lab has been incredibly welcoming over the past weeks and provided me with research materials and exciting demonstrations. Dr. Udaiyappan has especially been very helpful with sharing data from prior experiments. I would also like to thank the MSIP Directors for organizing this fantastic program for us all.

References

